Matematik Atölyesi – Geometri #17

Neden araba ve bisikletlerde kullanılan tekerlekler yuvarlaktır?

Kare Tekerler

Deneme-yanılma ile neden bu şekilden taşıtlara tekerlek yapılamayacağını görelim. Diyelim ki tekerlekler aşağıdaki gibi kare şekilde olsun:

20190130_231840

Karelerin 45 derece döndükten sonraki hali sağdaki gibidir:

İlk duruma göre karenin yüksekliği değişmiştir. Bir 45 derece sonraysa yükseklik ilk duruma gelir.

Kare tekerleğin zaafı büyüktür. Tekerler döndükçe taşıtın yüksekliği sürekli olarak değişir (yükselip-alçalır).

Üçgen Tekerler

Üçgen çeşitleri için tüm kenarları birbirine eşit olanı (yani eşkenar üçgen) tekerlek yapmak için en uygun şekil olarak görülür.

Elimizde aşağıdaki gibi bir eşkenar üçgen tekerlek olsun:

Sola doğru 60 derece çevirince eşkenar üçgen tekerleğin durumu:

20190130_231741

Görüldüğü üzere tekerleğin yüksekliği değişmemiştir. Yoksa eşkenar üçgenden tekerlek elde edilebilir mi? Gelin bir de ilk durumdan 30 derece sola çevirdikten sonraki durumu inceleyelim:

20190130_231751

Görüldüğü üzere yükseklik ilk duruma göre artıyor. Yani eşkenar üçgenden de tekerlek yapmak uygun olmaz. Bu tür tekerlekler üzerinde yapılan yolculuklar sonrasında sakatlanmanız olasıdır.

Çemberin Gücü

Çember şeklinde tekerleğin kullanılma nedeni çemberin yüksekliğinin dönerken hiç değişmemesinden gelir. Bu yönden çemberin şekli kare ve üçgen gibi çokgenlerden farklıdır.

çembeee

Yuvarlak dışında bir şekilden tekerlek yapılamaz mı?

Reuleaux Üçgeni

Rönesans denilince akla gelen ilk isimlerden biri Leonardo da Vinci’dir. Bu muhteşem şahsiyetin Reuleaux üçgeni ile ilişkisi ise da Vinci’nin öğrencisi Francesco Melzi’nin notlarının arasında bulunan bir dünya haritasından gelir:

289294-1338211643

1514 civarında yapıldığı düşünülen bu dünya haritası Amerika kıtasını barındıran ilk haritalardan biri olarak bilinir. Bu haritanın Leonardo da Vinci tarafından çizildiği düşünülür. Eğer bu doğruysa da Vinci’nin Reuleaux üçgenini kullanan ilk kişi olduğu varsayımı haksız bir varsayım olmaz.

Reuleaux üçgenini ilk kez keşfeden ve onun matematiksel özelliklerini açıklayan kişiyse Euler’di. Artık yazılardan şunu anlamış olmanız gerekiyor: “Ya Euler’dir ya da Gauss.”

Reuleaux üçgeni ismini Alman mühendis Franz Reuleaux’dan alır. 1861’de yazdığı kitapla meşhur olan, daha sonra yaptığı çalışmalarla “kinematiğin babası” unvanını hak etmiştir.

Reuleaux Üçgeni Nasıl Oluşturulur?

Şahsen en sevdiğim yöntem üç tane çemberin kesişimiyle oluşturmaktır. Öncelikle r yarıçaplı bir çember çizelim:

20190130_232053

Daha sonra merkezi bu çemberin üzerinde olan bir başka r yarıçaplı çember çizelim:

20190130_232030

En son olarak iki çemberin kesişim noktalarından birini seçip onu merkez kabul ederek r yarıçaplı üçüncü bir çember daha çizelim:

20190130_232017

Bu üç çemberin kesişerek ortada oluşturduğu şekil Reuleaux üçgenidir:

Reuleaux üçgeni döndürüldüğünde tıpkı çemberde olduğu gibi yüksekliği hep aynı kalır:

18mlevdqtxdsbjpg
Reuleaux üçgeni şeklinde tekeri olan bir bisiklet.

Bi’ Göz Atmakta Fayda Var

  1. Öklid’in aletlerini (sadece pergel ve ölçüsüz cetvel) kullanarak eşkenar üçgen çizin.
  2. Çizdiğiniz eşkenar üçgenden Reuleaux üçgeni elde etmeye çalışın.
  3. Üçten fazla kenarı olan Reuleaux şekli çizilebilir mi?

M. Serkan Kalaycıoğlu

Advertisement

Leave a Comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s