Matematik Atölyesi – Garip Dünyalar #9

Serkan’ın Adası

Yeni Zelanda yakınlarında Serkan Adası isminde özel bir adanın sahibiyim. (Rüyamda) Fakat ekonomik kriz sebebiyle adayı satışa çıkarmak zorunda kaldım. Yoksa yakında Nice’e özel jet yerine tarifeli uçuşla gitmek zorunda kalacağım…

Ebay ve sahibinden’e ilanımı koydum. Fiyat belirlerken kmyerine farklı bir birim seçtim: “Sadece sahil şeridi uzunluğunun kilometresi başına 100.000 dolara sahibinden satılık az kullanılmış ada.”

20190214_203034
Beyaz bölge: Serkan’ın adası.

Bir süre sonra ciddi bir alıcı ile pazarlığa tutuştuk. Alıcı sahil şeridinin uzunluğunu aşağıdaki gibi hesapladığını söyledi:

20190214_184605

Her bir uzunluk 8 km’dir. Bu hesaba göre adanın sahil şeridi yaklaşık olarak 8*3=24 km’dir. Yani alıcının teklifi 24*100.000 = 2.400.000 dolardır.

Teklifi az bulduğum için alıcıdan aynı yöntemi kullanarak tekrar hesap yapmasını istedim. Alıcı aşağıdaki gibi yeni bir teklifle geldi:

20190214_185221

Bu sefer alıcı tane 5 km olan düz çizgilerden 7 tane kullanır: 5*7=35 km. Alıcının yeni teklifi 35*100.000 = 3.500.000 dolardır.

Hala teklifin daha iyi olabileceğini düşündüğüm için alıcıdan bir kez daha sahil şeridinin uzunluğunu ölçmesini istedim. Gelen cevap aşağıdaki gibiydi:

20190214_185857

Alıcı son teklifinde sahil şeridini tanesi 3 km uzunluğunda olan 16 tane düz çizgiyle ölçer: 3*16=48 km. Yani son teklif 4.800.000 dolardır.

Soru: Alıcıdan isteyebileceğim en yüksek fiyat nedir?

Yazıyı okumaya devam etmeden önce soru üzerine biraz düşünün.

Sahil Şeridi Paradoksu

Alıcı cetvelin boyutunu küçülttüğü sürece sahil şeridinin uzunluğu artacaktır. Peki herhangi bir cetvelin en küçük boyutu ne kadardır?

1 cm?

1 mm?

1 mm’nin milyarda 1’i?

Buna verebileceğimiz bir cevap yoktur; cetvel sonsuza dek küçültülebilir.

Cetvel ile sahil şeridinin uzunlukları birbirleriyle ters orantılı olduğu için sahil şeridi sonsuz uzunluktadır.

İşte bu noktada bir paradoks ortaya çıkmıştır. Çünkü dünya üzerinde bulunan bir adanın sonsuz sahil şeridine sahip olmadığı bariz bir gerçektir. Buna rağmen yaptığımız hesabın bir üst sınırı yoktur.

Sorunun Kökeni

İngiliz matematikçi Lewis Fry Richardson (1881-1953) 20. yüzyılın ilk yarısında çok ilginç bir araştırma yapmıştı. Richardson’un araştırması herhangi iki ülke arasında savaş çıkma olasılığının hangi etkenlere bağlı olduğunu anlamaya yönelikti. Richardson’un sıra dışı araştırmasındaki sorulardan biri şuydu:

“Komşu iki ülkenin birbiriyle savaşma ihtimalini paylaştıkları sınırın uzunluğu etkiler mi?”

İngiliz bilim insanı bu soruya bir cevap bulmak için İspanya ile Portekiz’in paylaştığı sınır uzunluğunu incelemek istedi. Fakat iki ülkenin resmi kayıtları Richardson’u şaşırtıcı bir sonuçla karşılaştırmıştı. Ülkelerin verdiği sınır uzunlukları arasında fark olması normaldi. Halbuki İspanya ile Portekiz’in aynı uzunluk için verdiği değerler arasında 200 km gibi büyük bir fark vardı.

ispa.jpg

Tıpkı Serkan’ın adasında olduğu gibi aynı şey için farklı uzunluklar bulunmuştu.

Sahil şeridi paradoksunun başlangıcı işte bu olaydı.

Peki bu paradoksun mantıklı bir açıklaması var mı?

Devam edecek…

Bi’ Göz Atmakta Fayda Var

Serkan’ın adasının 6.000.000 dolardan daha fazla bir fiyata satılması için sahil şeridi uzunluğunun nasıl ölçülmesi gerekir?

M. Serkan Kalaycıoğlu

 

Advertisement

1 Comment

Leave a Comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s