Yeni Garip Dünya

Janos Bolyai

Doğum: 1802 – Romanya

Ölüm: 1860 – Romanya

Transilvanya denilince bir çok kişinin aklına Kont Drakula’nın hikayesi gelir. Fakat benim için o bölgeyle özdeşleşmiş bir başka isim var: Janos Bolyai.

Suya Düşen Matematik Hayalleri

Macar matematikçi Farkas Bolyai’nin oğlu olan Janos Bolyai (bundan sonra Bolyai dediğimde oğuldan bahsetmiş olacağım) daha 5-6 yaşlarındayken büyük bir potansiyele sahip olduğunu göstermişti. Maddi olarak zorluklar yaşayan bir ailede büyüyen Bolyai’ye matematiği öğreten kişi babası Farkas idi. Bolyai, henüz 13 yaşındayken kalkülüs* konusuna hakim olmayı başarmıştı.

*Kalkülüs

Fonksiyon, limit, türev, integral, diziler, seriler vb. konuları içeren ve üniversitede ilk sene dersi olarak verilen matematik alt dalı.

1816’da oğlunun daha iyi bir eğitim almasını isteyen Farkas, eski arkadaşı ve matematik öğrendiği kişi olan Gauss*’dan oğlunu yanına almasını ve ona matematik öğretmesini istemişti fakat Gauss bunu reddetmişti. Bu, Bolyai’nin Gauss’dan aldığı en kötü haber olmayacaktı.

Gauss

*Gauss

Matematiğin prensi olarak da bilinen Alman matematikçi, astronom, fizikçi ve coğrafyacı.

Gauss’un yanına gidemeyince Bolyai için en iyi seçenek Viyana’da askeri mühendislik okuyup hayatını asker olarak sürdürmekti. Yedi yıllık okulu dört yılda bitiren Bolyai, 1823-34 yılları arasında orduda görev almıştı.

Yeni Bir Geometri

Farkas Bolyai, kariyerinin büyük bölümünü Öklid’in paralelliğini* ispatlamak için harcamış, fakat istediği sonuca bir türlü ulaşamamıştı. Küçüklüğünden itibaren babasının uğraşının farkında olan Bolyai de 1820’lerden itibaren bu konu üzerinde çalışmaya başlamıştı.

*Öklid’in paralelliği

Yunan matematikçi Öklid’in yazdığı Elementler isimli eserin ilk kitabında bulunan beşinci postulat. (Postulat: İspata gerek duyulmadan, doğruluğu kabul edilen.)

En basit haliyle: Birbirine paralel olan sonsuz iki doğru hiçbir zaman kesişmez.

Orduda görev yaptığı süre boyunca da her boş anını matematikle geçiren Bolyai, 3 Kasım 1823’de babasına yazdığı mektupta yeni bir geometri bulduğundan ilk kez bahsetmişti:

“…hiçlikten, yeni ve garip bir dünya yarattım.”

Bolyai bu mektuptan 1 yıl sonra Öklid-dışı geometri fikirlerini neredeyse tamamlamıştı. Farkas ilk başta oğlunun fikirlerine şüpheyle yaklaşmış olsa da 1830’da onun ne kadar büyük bir iş başardığını fark etmişti. Bu yüzden 1831’de basılacak kitabının giriş kısmında Bolyai’nin çalışmasına yer vermesini istemişti.

Farkas’ın kitabı Bolyai’nin 24 sayfalık ekiyle birlikte 20 Haziran 1831’de basılmıştı. Farkas, kitabını eski arkadaşı Gauss’a göndermiş ve oğlunun yazdığı bölümü okumasını ondan rica etmişti. Gauss, Bolyai’nin 24 sayfasını okuduktan sonra iki kişiye iki ayrı yorum yapmıştı…

Fikir

En basit haliyle Bolyai’nin geometrisi: Öklid’in beşinci postulatını yok say. Yani paralel doğruların da kesiştiği bir geometri hayal et.

Öklid geometrisine göre iki nokta arasındaki en kısa yol düz bir çizgi olurken, Bolyai’nin Öklid-dışı geometrisinde bu çizgi bir tür eğri olur. Konu hakkında daha fazlasını okumak için tıklayın.

Bolyai’nin fikri şöyle de açıklanabilir:

Öklid geometrisinde bir üçgenin iç açıları toplamı her zaman 180 derece yapar. Fakat biz yuvarlak bir şekil üzerinde (örneğin Dünya üzerinde) bir üçgen çizdiğimizde, bu üçgenin iç açıları toplamı 180 dereceden büyük olabilir:

Bolyai’nin geometrisi (bugünkü adıyla hiperbolik veya Öklid-dışı geometri), yepyeni bir geometri idi.

Çöküş

Gauss, yakın bir arkadaşına “Genç geometrici Bolyai’yi birinci sınıf bir dahi olarak görüyorum.” demişti. Fakat, aynı zamanda Farkas’a yazdığı mektupta çok daha farklı bir tavır sergilemişti:

“…bu çalışmayı övmek bir bakıma kendimi övmek olur. Çünkü bu fikirlere 30-35 sene önce sahiptim.”

Bugün Gauss’un gerçekten Bolyai ile benzer fikirlere sahip olduğu 1824’te yazdığı bir mektup sayesinde biliniyor. Fakat bu, bahsettiği gibi 20li yaşlarında değil, 45 yaşından sonra fikirlerinin ortaya çıktığını gösteriyor. Gauss, özellikle bilim çevrelerinden alabileceği tepkilerden çekindiği için fikirlerini hiçbir zaman yayımlamamıştı.

Gauss’un çalışması hakkındaki yorumları, Bolyai’nin fikirlerinin matematik dünyasında fark edilmemesine yol açmıştı. Bolyai bu olaydan çok fazla etkilenmişti. Öyle ki zamanla sağlığı dahi kötüye gitmiş ve 1834’te ordu görevinden ayrılıp izole bir hayat sürmeye başlamıştı.

Paranoyalar

Bolyai, her şeye rağmen matematik üzerine çalışmayı sürdürüyordu. Fakat 1848’de eline geçen bir çalışma, neredeyse akıl sağlığını kaybetmesine neden olmuştu. Rus matematik Lobachevsky 1829’da yayımladığı çalışmasında Bolyai gibi Öklid-dışı bir geometriden bahsetmişti. Daha fenası, Gauss’un bu çalışmadan haberi vardı ve Lobachevsky’i övmüştü.

Bolyai, çalışmayı derinlemesine incelediği sırada aslında bunu yazan kişinin (yani Lobachevsky’nin) gerçek olmadığını, Gauss’un kendisiyle oyun oynadığını düşünüyordu. Çalışmalarının karşılığını bir türlü alamayan Bolyai, yavaş yavaş aklını kaybediyordu.

Hayatının son yıllarında matematik çalışmalarını durduran Bolyai, 1860’da yoksul bir şekilde hayatını kaybetmişti. Geriye 20.000 sayfaya varan matematik çalışması bırakmıştı. Bu çalışmalar halen Targu Mureş şehrindeki Bolyai-Teleki kütüphanesindedir.

Bugün Öklid-dışı geometrinin bir başka adı da Bolyai-Lobachevsky geometrisidir. Böylece Bolyai hak ettiği değeri öldükten sonra olsa da almıştır.

M. Serkan Kalaycıoğlu

Advertisement

Matematik Atölyesi – Garip Dünyalar #17

Kafamızdaki Topoloji

Sürekli olaylara bakış açımızı değiştirmekten bahsediyorum. Örneğin bir bebekle karşılaştığınızda aklınıza öncelikle bebeği sevmek ve onu güldürmeye çalışmak gelir. Halbuki bebeğin saçlarına dikkat ederseniz, burada çok önemli bir matematik bilgisinin saklı olduğunu görebilirsiniz:

Her bebeğin kafasında yukarıdaki gibi bir nokta vardır. Görüldüğü üzere bu noktanın dışında kalan saçlar, bebeğin kafasının hemen her yönüne doğru uzuyor. Peki noktanın bulunduğu yerde çıkan saçların yönü neresidir?

Bunun açıklaması topolojide saçlı top teoremi ile yapılmıştır.

Saçlı Top Teoremi

Saçlı top teoremine göre tüylü (veya bulabilirseniz saçlı) bir topu herhangi bir yöne doğru taramaya çalışın. Topun en az bir noktasında bulunan bir tüyün (veya saçın) istenilen yöne doğru taranması mümkün değildir.

Bunu yapmaya çalıştığınızda en az bir tüy (veya saç) taranmak istenen yönde olmaz. Bu tüyün bulunduğu noktada bir tür tekillik bulunur; tüy istenilen tarafa yatmayıp dik durmakta ısrar eder.

Bebeğin kafası da bir nevi saçlı top teoremi örneğidir. (Bir nevi dememin sebebi, saçlı top teoremine göre topun yüzeyinin tamamının tüyle kaplı olmasıdır. Halbuki bir insanın kafasının her yeri saçla kaplı değildir.) Bu sebeple yukarıdaki resimde gösterdiğimiz noktada bir tekillik vardır; o noktada saç dik kalır. O saç bir türlü tarakla yatırılamaz.

Torus

İçi boş (bir diğer deyişle; delikli) bir cisim olan torusta saçlı top teoremi işlemez. Yani tüylü bir torusun tamamını tek bir yöne taramak mümkündür.

Hiç Rüzgar Yok

Saçlı top teoreminin kullanım alanlarından biri meteorolojidir. Teoreme göre herhangi bir anda dünyanın herhangi bir noktasında hiç rüzgar yoktur.

Bunu ispatlamak için tüylü topu tarama yöntemini düşünmeniz yeterli. Diyelim ki dünyanın her yerinde doğudan batıya doğru rüzgar esiyor olsun.

Bu durumda kuzey ve güney kutup noktalarında rüzgar olmaz. Yani saçlı top teoremi haklıdır.

Haritadayım

Saçlı top teoremi Brouwer’in sabit nokta teoreminin bir başka türüdür. Hatta bu teorem de L.E.J. Brouwer tarafından 1912 yılında ispat edilmiştir.

Sabit nokta teoremi için verilebilecek örneklerden biri de haritalarla ilgilidir. Örneğin bulunduğunuz ülkenin haritasının çıktısını alın ve sınıf içerisinde yere koyun:

Daha küçük bir harita da olur.

Harita üzerinde öyle bir nokta vardır ki, haritanın bulunduğu coğrafi konumla aynıdır.

Avm veya otobüs duraklarındaki “buradasın” haritaları buna örnek olarak gösterilebilir.

Bi’ Göz Atmakta Fayda Var

Aşağıdakilerin tüylü olduğunu varsayın. Hangisi /hangileri aynı yöne doğru taranabilir? Neden?

M. Serkan Kalaycıoğlu

Yedi Bilgenin Matematikçisi

Thales

Doğum: M.Ö. 624 (tahmini), Milet (Aydın’ın Didim ilçesi)

Ölüm: M. Ö. 547 (tahmini), Milet

Thales teoremi: Yarım çember üzerinde alınan bir noktadan, çemberin çapı hipotenüs olacak şekilde çizilen bir üçgende çember üzerindeki noktanın açısı 90 derecedir.

Lisede geometriden aşina olduğunuz bu teorem ile bilinen Thales, bir teoreme sığamayacak kadar büyük bir bilim insanıydı. İşin garibi, Thales’in bu teoremi büyük ihtimalle bulmamış olmasıdır. Peki, bilmemiz gereken Thales kimdir?

Thales, Yunanistan’ın yedi bilgesinden biri olmakla birlikte tarihte bilinen ilk doğal filozoftur.

Yunanistan’ın yedi bilgesi: Thales, Pittacus, Bias, Solon, Cleobulus, Myson ve Chilan’dan oluşan gruptur.

Doğal filozoftan kastedilen Thales’in birden çok bilim dalıyla (matematik, mühendislik ve astronomi ile) ilgilenmiş olmasıdır. Thales’in günümüze kalan yazılı herhangi bir çalışması yoktur. Onun hakkında bildiklerimiz ölümünden çok sonraları başkaları tarafından yazılmıştır. Bu da Thales ile ilgili bir dolu efsanenin ortaya çıkmasına neden olmuştur.

Söylentilere göre Thales, gençliğinde Mısır’ı ziyaret etmişti. Zamanın Mısır’ında geometri başta olmak üzere matematik ve mühendislik bilinen dünyanın zirvesindeydi. İşte Thales burada kendini matematik ve mühendislikte geliştirmiş ve beraberinde Yunanistan’a yeni geometri bilgileri götürmüştü. Yine söylentilere göre Thales Mısır’da bulunduğu sırada harikulade zekâsını kullanarak Piramitlerin boyunu, onların gölgesine bakarak hesaplamıştı.

Güneş ışınlarının yere 45 derecelik açıyla geldiği durumlarda herhangi bir cismin boyu, gölgesinin boyuna eşit olur. Thales’in kullandığı yöntemlerden birinin de bu olduğu iddia edilir.

Bir başka efsaneye göre astronomi çalışmaları da yapan Thales M.Ö. 585’te Güneş tutulması olacağını “tahmin etmişti”. Thales’in zamanında Ay tutulmasının zamanını doğru tahmin eden kişilerin olduğu bilinen bir gerçek. Ama Ay tutulması her yerden görünebilirken Güneş tutulmasının Dünya üzerinde sadece belli yerleri etkiliyor olması, olayın gerçekleşeceği tarih hakkında bir hesap yapmayı o zamanın astronomi ve matematik bilgisiyle neredeyse imkansız kılıyordu. Bugün bu olayın kesinliği üzerinde hâlâ soru işaretleri bulunmakla birlikte Thales’in büyük ihtimalle sadece bir tahmin yürüttüğü düşünülür.

Thales’in Güneş tutulmasının ne zaman olacağını bilecek (ya da tahmin edecek) kadar olağanüstü bir zekâya sahip olması bazılarına göre normal karşılanıyor. Sonuçta Thales Yunanistan’ın yedi bilgesinden biri olarak biliniyordu. Hatta Sokrates’in belirttiği üzere Thales bu prestijli grupta bulunan tek doğal filozoftu.

Kimi araştırmacılara göre Thales herşeyin sudan geldiğini düşünüyordu. Ona göre Dünya düz bir disk şeklindeydi ve sonsuz bir okyanusun üzerinde duruyordu. Meydana gelen depremler Dünya’nın bu okyanus üzerindeki hareketlerinden kaynaklıydı. Thales’in bu düşünceleri çok önemliydi, çünkü tarihte ilk defa dünyamız ve evren için doğaüstü hikayeler değil rasyonel sayılabilecek bir fikir ortaya konmuştu.

Matematik Atölyesi – Geometri #20

Alcatraz’dan Kaçış

Bir sınıf içerisinde bir duvardan diğerine uzaklık 5 metredir. Bu iki duvar arasına 6 metrelik bir ip bağlanır. İp yerden 2 cm yükseklikte olacak şekilde gerildikten sonra fazla gelen 1 metrelik kısmı bir uçtan sarkar durumda bırakılır.

Amaç; ipe değmeden altından geçip sınıftan kaçmaktır.

Kurallar

  • Kaçış iki duvarın orta noktasından yapılmalıdır.
  • İpi genişletmek için fazla kısım kullanılmalıdır.
  • İpe değmemeniz için bir kişi sıradaki öğrenci yerine ipi germe işini yapar.
  • Kaçış denemesi için herkesin tek bir hakkı vardır.

Kazanma Şartı: En az uzunlukta ip kullanarak ipin altından geçmek.

Futbol Sahası

Bir futbol sahasında iki kale arasında kalan mesafe 90 ile 120 metre arasındadır. Diyelim ki uzunluğun 100 metre olduğu bir sahadaki kalelerin orta noktaları arasına bir ip gerdik. Bu ip 100 metre uzunluğundadır ve saha yüzeyinin tam üstündedir. (Yani ip yere yapışık şekilde duruyor.)

İpin tam ortası, başlangıç noktası diye adlandırılmış olan noktaya denk gelir. Burası sahanın orta noktasıdır.

İpe 1 metre daha ekleyelim. İp, iki kale arasındaki mesafeden daha uzun olacağı için artık gergin değildir.

Soru: Son durumda sahanın başlangıç noktasından ipi kaç metre havaya kaldırabiliriz?

Çözüm

Soru bir bakıma şu anlama da gelir:

“Birbirine 100 metre mesafede bulunan iki nokta arasına biri 100, diğeri 101 metre olan iki ip bağlanmıştır. 101 metre uzunluğundaki ip tam orta noktasında yukarı doğru çekildiğinde, iki ipin orta noktaları arasında mesafe (diğer bir deyişle ikinci ipin yerden yüksekliği) kaç metredir?”

Yukarıdaki çizim incelendiğinde aslında iki tane birbirine eş dik üçgen olduğu görülür:

Dik üçgenlerin birinde Pisagor teoremi uygulanarak h kenarı, dolayısıyla aradığımız cevap bulunabilir:

Pisagor teoremi der ki: “Bir dik üçgende dik açının karşısındaki kenarın uzunluğunun karesi, diğer iki kenarın uzunluklarının karelerinin toplamına eşittir.”

O halde:

(50,5)2 = 502 + h2

h ≈ 7,089 m olur.

Sonuç

100 metrelik ipe sadece 1 metre eklemek, ipin orta noktasının yerden 7 metre yükseğe çıkabilmesini sağlar. Yani sadece 1 metre ekleyerek ipin ortasında bir tır geçirilebilir.

M. Serkan Kalaycıoğlu

Matematik Atölyesi – Garip Dünyalar #14

Kulaklıklar Artık Düğüm Olmasın

12-13 yaşlarındayken kasetçalarım olmadan dışarı çıkmazdım. Kasetçalarımla ilgili iki büyük düğümlenme sorunum vardı. Bunlardan ilki kasetin bandının düğümlenmesiydi. Şanslıysam kalem yardımıyla bu düğümü kolayca çözebilirdim. Şansımın yaver gitmediği durumlarda ise kaset çöpe giderdi.

person holding black cassette tape

Diğer düğüm problemi kulaklığımla alakalıydı. Kimi zamanlar kulaklığım öyle düğümlenirdi ki düğümü çözene kadar muhakkak bir arkadaşıma denk gelirdim. Bu da karışık kasedimi bir sonraki güne kadar dinleyemeyeceğim demekti.

20190730_143315.jpg

İşin komik tarafı yaşadığım sinir harbi nedeniyle kulaklığı çantama rastgele fırlatarak aynı sorunu ertesi gün de yaşayacağımı garantiye alıyordum.

Çantada birbirine dolanan kulaklık olayının bir benzeri vücudumuzu oluşturan hücrelerde her an yaşanmaktadır.

DNA, tüm organizmalar ve bazı virüslerin canlılık işlevleri ve biyolojik gelişmeleri için gerekli olan genetik talimatları taşıyan bir nükleik asittir. DNA’nın başlıca rolü bilginin uzun süreli saklanmasıdır.

dna_main_001

DNA, “helix” adıyla bilinen bir sarmal eğri şeklindedir. Bir hücrenin içinde bulunan DNA sarmalının uzunluğu 2 metreyi bulur. Boyutlar arasındaki ilişkiyi tamamen anlamanız için bir örnek vereceğim: Eğer bir hücrenin çekirdeği basketbol topu büyüklüğünde olsaydı, o hücrede bulunan DNA 200 km uzunluğunda olurdu.

Bir metrelik kulaklığı kocaman bir çantaya atınca neler olduğunu biliyorsunuz. Bir basketbol topunun içine 200 km uzunluğunda sarmal eğri sığdırmaya çalışmak mı?! Tanrım; her yer düğüm!

Düğüm Teorisi

İşte bu keşmekeş matematikçilerin düğümlerle ilgilenmesine neden olmuştu. Fakat matematik ile düğümün ilişkisi DNA çalışmalarından çok daha eskiye dayanıyor. 19. yüzyılda İskoç bilim insanı William Thomson (nam-ı diğer Lord Kelvin) atomların farklı düğümler şeklinde olduğunu öne sürmüştü. Kısa süre içinde Lord Kelvin’in fikri matematikçileri düğümleri incelemeye itse de Lord Kelvin’in yanıldığının ortaya çıkması düğüm teoresini neredeyse 100 yıl boyunca kendi haline bırakmıştı. (20. yüzyılın başlarında Kurt Reidermeister’ın çalışmaları neredeyse 1980’lere dek tekti. Reidermeister’dan bir sonraki yazıda bahsedeceğim.)

Peki matematiksel düğümün diğer düğümlerden farkı var mı?

maxresdefault (4)

Örneğin ayakkabı bağcıklarını bağlarken atılan düğüm, matematikte düğüm olarak karşılık görmez. Çünkü bağcığın iki ucu açıktır. Halbuki matematikte bir düğümün iki ucu birbirine bağlı olmalıdır.

180px-Example_of_Knots.svg

Soldaki düğüm olsa da matematikte düğüm ifade etmez. Sağdaki ise matematiksel bir düğümdür.

Unknot* ve Trefoil*

Düğüm teorisinde düğümlere farklı isimler verilir. Bu yapılırken düğümün en sade halinin sahip olduğu kesişim sayısı dikkate alınır. Hiç kesişimi olmayan bir düğüm (unknot veya kesişimsiz düğüm) aslında bir çemberdir:

20190730_135245.jpg
Lastik bant bir kesişimsiz düğümü ifade eder. (unknot)

Aşağıdaki iki düğüme bir göz atın:

 

 

Bu düğümler birbirlerinden farklı görünüyor değil mi? Soldakinde 1, sağdakindeyse 2 kesişim vardır.

lanaa.jpg

Fakat bu düğümlerden birini kesip-biçmeden, yalnızca iple oynayarak (bir tarafa yatırmak ve/veya ters çevirmek gibi) diğerine benzetebiliriz!

Yani aslında bu iki düğüm birbirinin aynısıdır. Hatta bu iki düğüm, yukarıda gösterilmiş olan kesişimsiz düğümün ta kendisidir. Örneğin soldaki düğümün sol kısmı yukarı itilirse kesişimsiz düğüme dönülür:

 

 

1 kesişimi olan ama kesişimsiz düğüme döndürülemeyen bir düğüm var mıdır?

Hemen yanıtı veriyorum: 1, ve hatta 2, kesişimi olup da kesişimsiz düğüme döndürülemeyecek bir düğüm yoktur.

Peki ya 3 kesişim?

3 kesişimi olup, kesişimsiz düğüme çevrilemeyen düğüme trefoil denilir.

Blue_Trefoil_Knot.png
Trefoil düğüm.

Trefoil, ilk bakışta kesişimsiz düğüme çevrilebilecekmiş gibi görünse de düğüm teorisi kuralları çerçevesinde (yani kesip-biçmeden) bunu yapmak imkansızdır. Trefoil özel bir düğümdür, çünkü (unknot dışında) kesişim sayısı en düşük (3) olan düğümdür. Bu yüzden de trefoil düğüm teorisi için temel kabul edilir.

trefoilandmirror.jpg

Trefoil düğümün önemli özelliklerinden biri ayna simetrisiyle alakalıdır: Birbirinin simetrisi olan a ve b trefoilleri birbirinden farklıdır! Yani birinden diğerini elde etmek düğüm teorisi kuralları içinde mümkün değildir.

Möbius Şeridi ve Trefoil

Daha önce Möbius şeridi ve özelliklerinden bahsetmiştim. Kısaca hatırlatmak gerekirse bir kağıt şeridinin iki ucu birbirine bağlanırsa çember elde edilirken, uçlardan biri 180 derece çevrilip uçlar bağlanırsa karşınıza Möbius şeridi çıkar.

Gelin Möbius şeridini yaparken uçlardan birini üç defa 180 derece çevirelim:

 

 

Daha sonra oluşan şekli ortasından (boyuna paralel olarak) keselim:

20190730_131333.jpg

Karşımıza aşağıdaki gibi bir şekil çıkar:

20190730_134158-1.jpg

Şekli bir kurcaladığımızda aslında bir trefoil düğümü elde ettiğimizi görürüz:

 

 

Devam edecek…

Bi’ Göz Atmakta Fayda Var

  1. Kağıt şeridinden trefoil düğümü yaparken şeridin ucunu 3 defa 180 derece döndürüyoruz. Bu döndürmeyi içe veya dışa yapmanın bir farkı var mıdır? Neyle karşılaştınız?
  2. Şeridin ucunu 3 değil de 5 defa döndürürseniz ne olur? (Cevabı bir sonraki yazıda.)

M. Serkan Kalaycıoğlu

Matematik Atölyesi – Geometri #19

Ne Kadar Çikolata?

Karnım acıktı. Gecenin bir yarısı evde yiyecek bir şeyler bulma umudundayım. Mutfakta hiç açmadığım bir çikolata buldum:

20190701_131610

Derhal kendime kahve yaptım. Kahvenin yanında götürmek için çikolatadan ufak bir parça kopardım:

20190701_131715

Parçayı hunharca katlettikten sonra pişmanlık çöktü: Acaba çok mu çikolata yedim?

Kalan parçayı kareli defter üzerine koydum. Böylece çikolatanın hem ilk hem de son halinin kareli defterde (veya koordinat düzleminde) hangi noktalarda kaldığını bulmuş oldum:

çiko1

Kopardığım parça bir basit çokgen şeklindedir. Amacım bu parçanın alanını bulmak. Bir basit çokgen alanı bulunurken birçok yolu deneyebilirim. Aklıma ilk gelen yol “Gauss’un ayakkabı bağcığı” ismiyle bilinen bir teoremdir.

Gauss’un Ayakkabı Bağcığı Teoremi

Koordinat düzleminde bulunan bir basit çokgenin alanını bulmak için kullanılan ayakkabı bağcığı teoremini uygulamak için çokgenin köşelerinin koordinat düzlemindeki yerlerini belirlemek gerekir:

çiko2

Bu noktalar için teorem tıpkı ayakkabı bağcığı gibi ilerler. Yönteme geçmeden önce alanı bulunması gereken parçada bulunan tüm köşeleri sırala:

çiko3

lak1

İlk noktayı listenin sonuna tekrar ekleyin.

Daha sonra listedeki sayılar çapraz olarak çarpılır. Soldan sağa olanların toplamı sağdan sola olanların toplamından çıkarılır:

This slideshow requires JavaScript.

{(0*0) + (5*1) + (4*3) + (5*3) + (0*0)} – {(0*5) + (0*4) + (1*5) + (3*0) + (3*0)}

{32} – {5}

27

Çokgenin alanı; çıkan sayının yarısıdır:

27/2

13,5

M. Serkan Kalaycıoğlu

Matematik Atölyesi – Geometri #18

Pastayı Koru

Bugün okula kutsal pasta geliyor. Pasta okuldaki odalardan birinde ziyaret edilebilecek. Siz kutsal pastanın korunması için organizasyonu sağlamakla görevlisiniz. Amacınız en az sayıda koruma ile pastanın sürekli göz altında tutulabilmesi.

Korumalarla ilgili bir bilgi: Bir müze koruması belli bir noktada durur ve bulunduğu odayı o noktadan inceler. Tabii ki koruma kendi etrafında 360 derece dönebilir.

Kutsal pastanın sergileneceği odanın krokisi aşağıdaki gibidir:

20190328_130114.jpg

Bu odaya en az kaç koruma gerekir?

Çokgen Şeklinde Odalar

Bu sorunun çözümüne en basit çokgen olan üçgenden başlayarak ulaşmaya çalışacağız.

Örnek 1: Üçgen oda.

İlk örnekte oda üçgen şeklinde olsun. Böyle bir odada kutsal pasta nereye konulursa konsun tek bir koruma onu her an gözleyebilir:

Örnek 2: Dörtgen oda.

Burada da yine tek bir koruma yeterli gelir:

Soru: Tüm çokgen şeklinde odalarda bir koruma yeterli gelir mi?

İçbükey-Dışbükey Farkı: Bir çokgende iç açıların tamamı 180 derecenin altındaysa o çokgen dışbükeydir. Açılardan herhangi biri dahi 180 derecenin üzerindeyse çokgen içbükey olur.

Dışbükey çokgenlerin tamamı tek bir korumayla korunabilir. Aynı şey her içbükey çokgen için söylenemez.

Kutsal pastanın bulunduğu oda içbükey bir çokgendir. Önce basit bir içbükey çokgen inceleyelim:

20190328_123117.jpg

İçbükey çokgenliğe yol açan noktada duran bir koruma, odanın her yerine hakim olur:

20190328_123216.jpg

Peki çokgen aşağıdaki gibiyse:

20190328_123606.jpg

Bu tür bir odada tek koruma yeterli gelmez:

20190328_123732.jpg
Koruma taralı alanı göremez.

Sanat Galerisi Problemi

Daha karmaşık oda krokilerine geçmeden önce, koruma sayısıyla ilgili bir algoritma olup olmadığına bakmamız gerekir. İlk kez 1973 yılında Victor Klee ismindeki bir matematikçi tarafından ortaya atılan sanat galerisi problemini çözmek için üçgenleme olarak bilinen bir yöntem kullanılır.

Üçgenleme: Bir çokgeni üçgenlere bölme işlemidir.

Önce verilen planı üçgenlere ayıralım:

Daha sonra üçgenlerdeki köşelere renkler verelim. Aynı üçgendeki köşeler birbirinden farklı renkte olmak zorundadır:

20190328_124639.jpg

En az sayıda kullanılan renk, en az koruma sayısını verir. Korumalar bu renklerin bulunduğu köşelerde durduğu sürece odada görünmeyen bir yer kalmaz:

20190328_124931.jpg
Burada iki çözüm vardır: Korumalar 2 veya 3 numaraları köşelerde durarak odayı koruyabilir.

Çözüm

O halde kutsal pastanın bulunduğu odaya en az kaç koruma gerektiğini ve bu korumaların nerede durmak zorunda olduğunu bulabiliriz. Önce pastanın bulunduğu odanın krokisini üçgenlere ayıralım:

20190328_130612.jpg

Daha sonra üçgenlerin köşelerini boyayalım:

20190328_130833.jpg

Sonuçta üç renk aşağıdaki kadar kullanılmıştır:

20190328_131241.jpg

En az kullanılan renkler 1 ve 3’tür. Bu da bize odayı korumak için gereken sayıyı verir: 6. Bu noktalarda konuşlandırılan korumalar kutsal pastayı sürekli göz önünde bulundurur.

Bi’ Göz Atmakta Fayda Var

  1. Kutsal pastanın bulunduğu odada aşağıdaki gibi sütunlar bulunsaydı çözüm nasıl olurdu?
    20190328_131619.jpg
  2. Çokgenlerin köşe koruma sayısı arasında nasıl bir ilişki var?

M. Serkan Kalaycıoğlu

Matematik Atölyesi – Garip Dünyalar #13

Dinozor Sevgisi

Küçükken Pazar günleri televizyonların haftalık program listesini içeren kitapçığı okumaya bayılırdım. Bu kitapçık sayesinde “tsubasa”nın bölümlerini takip eder, en sevdiğim filmlerin o hafta televizyonda olup olmadığını öğrenirdim. Bu sevdiğim filmlerin başında 1993 yapımı Jurassic Park geliyordu.

Jurassic Park, Taş Devri (Flintstones) ile birlikte özellikle benim jenerasyonumun genetik, paleontoloji (diğer adıyla fosilbilim) ve dolayısıyla dinozorlara büyük ilgi göstermesine neden olmuştu. Öyle ki akranlarım arasında “Tyrannosaurus rex” ismini duymayan çok azdır.

Jhkbi8QKyPml
En sevdiğim paleontolog: Ross Geller.

Dragon Eğrisi

20’li yaşlarımın ortasında fraktallarla ilgili yaptığım bir araştırma beni Jurassic Park’ın kitabına yöneltmişti. İlk kez 1990’da yayımlanmış olan kitabın her bölümünün başında bulunan şekiller çok özel bir fraktalın yapılışını gösteriyordu:

OGvqP9l

Bu fraktal Jurassic Park fraktalı veya Dragon eğrisi olarak da bilinir.

Dragon eğrisi nasıl yapılır?

  • Yatay bir çizgi çizin.
  • Bu çizginin saat yönünde 90 derece çevrilmiş halini çizin.
  • İlk çizgiye ikincisini ekleyin.
  • Yukarıdaki işlemleri sonsuza dek tekrarlayın.

İlk deneme aşağıdaki sonucu verir:

20190318_123534

Aynı işlemlerin ikinci tekrarı:

20190318_123553

Üçüncü ve dördüncü tekrarlar:

Jurassic Park kitabında ilk bölümün başındaki şekil aslında dragon eğrisinin dördüncü tekrarıdır:

Bi’ Göz Atmakta Fayda Var

Buraya kadar okuduğunuzda “e ne var bunda?!” demiş olabilirsiniz. O halde beraber bir deney yapalım. Öncelikle aşağıda gösterdiğim gibi ince uzun (çok ince olmasına gerek yok) bir kağıt parçası kesin:

20190226_123508

Kestiniz mi? Aferin. Şimdi bu kağıdın sağ ucunu sol ucuna birleştirin. Bir diğer deyişle kağıdı ikiye katlayın:

20190226_123548

Katlanan yer belli olsun diye biraz bastırın. Daha sonra kağıdın bir yarısını sabit tutup diğer yarısını buna dik olacak şekilde açın:

20190226_123649

Kağıdı tekrar kapatın ve bir daha sağ ucu sol ucuna gelecek şekilde katlayın:

20190226_123720

Kağıdı uçlarını sakince açarsanız aşağıdaki şekille karşılaşırsınız:

20190226_123749

Kağıdı tekrar kapayın ve üçüncü defa sağ ucu sol ucun üzerine getirin. Daha sonra kağıdı yavaşça açın:

Aynı işlemleri dördüncü defa yapın:

Sonuç: Bir kağıt dört defa ortadan ikiye katlandığı takdirde dragon eğrisinin dördüncü tekrarına ulaşılır.

M. Serkan Kalaycıoğlu

Matematik Atölyesi – Garip Dünyalar #12

Göründüğü Gibi Değil

Sahil şeridi paradoksuna Mandelbrot’un yaptığı açıklamayı gerçek bir örnek üzerinden giderek göstereceğim.

ABD ile Norveç’in yüz ölçümleri arasındaki ilişki aşağıdaki gibidir:

Görünürde ABD lehine bariz bir fark olmasına rağmen Norveç’in kıyı şeridi ABD’nin toplam kıyı şeridinden çok daha uzundur:

ABD: 19.924 km

Norveç: 25.148 km

Bu, Norveç kıyılarının aşırı derecede girintili-çıkıntılı olmasından kaynaklanır. Yani Norveç’in kıyı şeridi ABD’nin kıyı şeridine göre çok daha pürüzlüdür. Mandelbrot bunu fraktal geometrisinde şöyle ifade eder: Norveç kıyı şeridinin fraktal boyutu ABD’ninkinden daha büyüktür.

Fakat bu, fraktal boyutu büyük olan şeklin daha uzun olduğu anlamına gelmez. Uzunluk ile fraktal boyut arasında bir karşılaştırma yapılamaz.

Ölçü Aleti

Sahil şeridi paradoksuna göre biz ne kadar küçük bir ölçü aleti seçersek, ölçülen uzunluk o derecede büyük çıkar. Peki ABD ve Norveç’in kıyı şeritleri hesaplanırken ölçü aletinin uzunluğu nasıl belirlendi?

İşte fraktal boyut burada işe yarar: Ölçü aletinin büyüklüğünü seçmede.

O halde Norveç ile ABD’nin kıyı uzunluklarını kıyaslamak için bunların fraktal boyutlarını hesaplamamız gerekir. Fraktal boyutları da bize seçilecek ölçü aletinin büyüklüğünü verir ki bu sayede iki kıyı arasında kıyas yapılabilir.

Soru: İyi ama bir sahil şeridinin tam uzunluğu nasıl ölçülür?

Maalesef ölçülemez. Bugün kıyı ve ülke sınırları için bilinen rakamların hiçbiri %100 doğru değildir. Ama emin olduğumuz bir şey var ki o da fraktal boyutu sayesinde kıyaslama yapabiliyor oluşumuzdur. Yani tam olarak uzunluğu bilemediğimiz halde herhangi iki kıyı veya sınırın hangisinin daha uzun olduğunu bilebiliyoruz.

Kutu Sayma Yöntemi

Fraktal boyut hesabı yapmak için sadece kutu sayma ismiyle bilinen basit bir yönteme ve hesap makinesine ihtiyacınız var.

Diyelim ki aşağıda gösterilen şeklin fraktal boyutunu bulacağız:

20190226_152316

Şekil 1×1 birimlik bir karenin içinde olsun. Öncelikle şeklin tamamını kenarı 1/4 birim olan karelere bölelim ve şeklin sınırının geçtiği kareleri sayalım:

Şeklin sınırı 14 tane karenin içinden geçer.

Daha sonra şekli bir kenarı 1/8 birim olan karelere bölelim ve yine sınırın geçtiği kareleri sayalım:

Bu sefer şeklin sınırı 32 tane karenin içinden geçer.

Hesap makinesi kullanarak sınırın geçtiği kare sayılarının birbirine bölümünün logaritmasını (yani 32/14’ün logaritmasını), kare boyutlarının birbirine bölümünün logaritmasına (yani {1/8}/{1/4}’ün logaritmasına) bölüp sonucu eksiyle çarparsak şeklin fraktal boyutunu buluruz:

loga.jpg

Rastgele çizdiğim şeklin fraktal boyutu yaklaşık olarak 1,19’dur.

Bi’ Göz Atmakta Fayda Var

Aşağıdaki şeklin fraktal boyutunu hesaplayın:

20190228_005941.jpg

M. Serkan Kalaycıoğlu

Matematik Atölyesi – Garip Dünyalar #11

Kesirli Boyut

Bir sahil şeridinin uzunluğu hesaplanırken kullanılan ölçü aleti ne kadar küçülürse hesaplanan uzunluk o derecede büyür. Bu da sahil şeritlerinin farklı (hatta sonsuza yakın) uzunlukta bulunabileceğini gösterir.

Mandelbrot sahil şeridi uzunluğunun büyümesi ile ölçü aletinin küçülmesi arasındaki orana “fraktal boyutu” ismini vermişti.

Öklid geometrisinde nokta 0, çizgi 1, kağıt 2, küp ise 3 boyutludur. Fakat doğada her şey Öklid geometrisinde gösterildiği gibi düzgün değildir. 20. yüzyılın başında Felix Hausdorff ismindeki bir matematikçi bazı şekillerin kesirli boyutlara sahip olduğunu göstermişti. Daha sonra Hausdorff-Besicovitch ismini alan kesirli boyut fikrini ele alan Mandelbrot fraktal geometrinin temellerini atmıştı.

Bir önceki yazıda Öklid geometrisinde boyut hesabından bahsetmiştim. Fraktal geometrisinde de şekillerin boyut derecesi hesaplanırken aynı formül kullanılır. Formülü test etmek için önce birkaç özel fraktaldan bahsetmem gerekiyor.

Kar Tanesi

İsveçli matematikçi Helge von Koch’dan ismini alan Koch kar tanesi diye de bilinen şekil, fraktal geometrinin en ünlü şekillerinden biridir.

Koch kar tanesini yapmak için işe düz bir çizgiyle başlanır. Çizgi üç parçaya ayrılır ve ortadaki parça silinir:

Ortadaki boşluğa silinen parçayla aynı uzunlukta iki çizgi koyulur (bir eşkenar üçgen yapılırmış gibi):

20190224_150711

Bundan sonraki her adımda şekilde düz çizgi bulunan her yere aynı işlemler yapılır. Önce her çizgi üç parçaya ayrılıp orta kısımlar çıkarılır:

20190224_161832

Daha sonra bu boşluklara silinen parçayla eşit uzunlukta iki yeni çizgi eklenir:

Koch kar tanesinin aşamaları ve kar tanesi görünümü:

El yapımı bir fraktal olan Koch kar tanesinin boyutunu bulmak için formülü uygulayalım. Bilmemiz gereken şeyler fraktaldaki parçaların boyutları ve sayılarıdır.

Koch kar tanesini yaratmak için çizdiğimiz ilk çizgi toplamları 1 birim yapan üç eşit parçadan oluşur:

20190224_161758

İkinci durumda bu parçalardan 4 tane vardır:

Adsızmbm.jpg

O halde Koch kar tanesinde parça uzunlukları 1/3, parça sayısı ise 4 olarak devam eder. Buradan Koch kar tanesinin fraktal boyutu (buna d diyelim) hesaplanabilir:

(1/3)d = 4

d ≈ 1,26.

Koch Eğrisi

Koch kar tanesini oluştururken bir düz çizgiyi üç parçaya ayırıp orta parça yerine eşkenar üçgen koymuştuk. Gelin bunu değiştirelim ve ortaya kare koyalım:

Sadece üç adımda şeklin ne kadar karmaşıklaştığını görebilirsiniz:

Bu özel Koch eğrisinde her bir düz çizgi bir öncekinin 1/3’ü uzunluğunda iken her seferde fraktalda 5 parça düz çizgi oluşur:

555.jpg

Boyut formülü uygulanınca fraktalın boyutu aşağıdaki gibi hesaplanır:

(1/3)d = 5

d ≈ 1,4649.

Peki boyutlar arasındaki fark neyi ifade ediyor?

Eğrinin Koch kar tanesinden daha yüksek boyuta sahip olması, eğrinin kar tanesinden hem daha fazla alan kapladığını hem de daha pürüzlü olduğunu gösterir.

Çıplak gözle de bunu fark etmek mümkündür:

Devam edecek…

Bi’ Göz Atmakta Fayda Var

Bir başka el yapımı ünlü fraktal Waclaw Sierpinski’den adını alan Sierpinski üçgenidir.

Sierpinski üçgeni oluşturulurken önce büyük bir eşkenar üçgen çizilir ve bu üçgenin kenarları orta noktalarından işaretlenir:

İşaretli noktalar birleştirilerek dört yeni eşkenar üçgen ortaya çıkar. Yeni eşkenar üçgenlerden ortada olanı kesilirse şekil aşağıdaki gibi olur:

  1. Sierpinski üçgeninin fraktal olduğunu gösterin.
  2. Sierpinski üçgeninin fraktal boyutunu hesaplayın ve Koch kar tanesinin boyutuyla karşılaştırın.

M. Serkan Kalaycıoğlu