Matematik Atölyesi – Katil Sayılar #6

Sokrates’in Dersi

Tarihin en önemli filozoflarından biri olarak görülen Platon’un matematiğe yaptığı katkılardan önceki yazılarda bahsetmiştim. Bu yazıda Platon’un MÖ 380’de yazdığı kitap olan Menon’u inceleyip irrasyonel sayıların varlığını başka bir yöntemle göstereceğim.

philosophydiscourse-cropped-425x259

Kitap, Menon’un Sokrates’e erdemin öğretilebilir olup olmadığını sormasıyla başlar ve sonuna dek bu ikisi arasındaki diyalogdan oluşur. Platon bu kitapta herhangi bir konuyu felsefi olarak nasıl ele almamız gerektiğini Sokrates’in ağzından anlatmaya çalışmış.

Bunu yaparken önemli bir matematik probleminden de bahsedilmiş. Şahsen kitabın özellikle bu bölümünün sadece öğrenciler değil, öğretmenlerce de okunması gerektiğini düşünüyorum.

Problem

Kitabın ortalarına doğru Sokrates Menon’un öğrencilerinden (öğrenciyi çocuk diye adlandıracağım) birine bazı sorular yöneltir. Sorular kare şeklinin neye benzediği, ne gibi özellikleri olduğu ve alanının nasıl bulunduğu üzerine başladıktan sonra sıra Sokrates’in asıl sormak istediğine gelir: Bir karenin alanının iki katı alana sahip karenin bir kenarının uzunluğu nedir?

Kareyi karelemek diye bilinen bu sorudan daha önce de bahsetmiştim. Sokrates sorusunda karenin bir kenar uzunluğunu 2 birim olarak belirler ve karenin alanının 4 olduğunu çocuğa buldurtur. Sonra bu karenin alanının iki katı alana sahip bir karenin var olup olmadığını sorar. Çocuk Sokrates’e böyle bir karenin var olduğunu ve alanının 8 birim kare olduğunu söyler.

Sokrates bu karenin bir kenar uzunluğunu sorduğundaysa çocuk alan hesabında olduğu gibi ilk karenin bir kenarı uzunluğunun iki katını alır ve 4 cevabını verir. Fakat Sokrates 4 birimlik bir karenin alanını sorduğunda çocuk 16 birim kare der ve yanlışını fark eder.

Klasik Yunan Matematiği

Sokrates 8 birim karelik alanı olan bir kareyi çizdirmek için çocuğa sorularına devam eder. Bunu yaparken soruları çocuğa bir şekil çizdirtir. Problemin başındaki 2 birimlik kareden önce bir tane çizdiren Sokrates, sonra bu karenin sağına ve altına aynı kareden koydurur. Şekildeki sağ alt kısmı da doldurtan Sokrates bu dört karenin her birinin 4 birim karelik alana sahip olduğunu çocuğa buldurtur.

Sokrates’in bir sonraki sorusu şudur: “Bir karede çapraz köşeleri birleştirmek, karenin alanını iki eşit parçaya bölmek demek değil midir?”

Çocuğun evet cevabından sonra şekildeki dört karenin de köşegenlerini çizdiren Sokrates, bulunan şeklin alanının kaç olduğunu sorar:

8 birim kare cevabını veren çocuk, 4 birim karelik karenin iki katı alana sahip kareyi elde etmiş olur.

Pisagor teoremine göre bu karenin bir uzunluğu aşağıdaki gibi irrasyoneldir:

karepis

Sonuç

Sokrates çocuğa irrasyonel bir uzunluğu çizdirmesine rağmen uzunluğun ne kadar olduğunu dert etmez. Çünkü antik Yunanistan’da sayılar uzunluklarla gösterilirdi ve uzunluk bilindiği sürece onun ne anlama geldiği önemsenmezdi. Bu sonuç klasik Yunan matematiğine verilebilecek en güzel örneklerden biridir.

Pisagor ve onun öğrencileri tüm sayıların rasyonel olduğunu iddia ederken Sokrates gibi Yunan filozoflar irrasyonel sayıların varlığını bu tip yollarla gösteriyordu.

M. Serkan Kalaycıoğlu

Matematik Atölyesi – Katil Sayılar #5

Eşkenar Üçgen ve İrrasyonel Sayı

Bir önceki yazıda kafes noktalar sisteminde köşeleri noktalar olacak şekilde bir eşkenar üçgenin çizmenin mümkün olup olmadığını sormuştum. Bu soruya vereceğiniz cevabı ispatlamanızı istemiştim.

İspat

Elimizde aşağıdaki gibi kenarları ikişer birim olan bir eşkenar üçgen olsun:

akuie2

Üçgenin köşelerinin kafes noktalar olduğunu kabul edelim. Bu demektir ki eşkenar üçgenin kenarları ve alanı rasyoneldir. Neden?

Çünkü Pick’in teoremine göre kafes noktalar sistemindeki bir çokgenin alanıyla nokta sayısı arasında direk bir ilişki vardır. Nokta sayısı hiçbir zaman irrasyonel olamayacağına göre (√3 tane nokta olamaz, değil mi?!) bu sistemdeki çokgenlerin alanları da rasyonel olmak zorundadır.

Bir üçgenin alanı taban ile yüksekliğin çarpımının yarısıdır. O halde eşkenar üçgende tabana ait olan yükseliği indirelim ve üçgenin iç açılarını belirtelim:

euake3

Artık elimizde iki tane birbirine eş dik üçgen var. Bu dik üçgenlerin hipotenüsleri 2, tabanları 1 birimdir. Yüksekliği Pisagor teoreminden çıkarabiliriz:

h2 + 12 = 22

h2 = 4 – 1

h2 = 3

h = √3.

Yükseklik irrasyonel çıktığı için üçgenin alanı da irrasyonel olacaktır:

1/2(2*√3) = √3.

ÇELİŞKİ

Bu sonuç bir çelişkiyi gösterir. Çünkü Pick’in teoremine göre kafes noktalarda bulunan bir çokgenin alanı her zaman rasyonel olmalıdır. O halde bu eşkenar üçgen kafes noktalarda yer alamaz.

Bi’ Göz Atmakta Fayda Var

Eşkenar üçgen dışında kafes noktalar sisteminde çizilemeyecek başka çokgenler bulabilir misiniz?

M. Serkan Kalaycıoğlu

Matematik Atölyesi: Katil Sayılar #3

Kirene’li Teodorus

Günümüzün Libya’sında kalan antik Kirene kenti MÖ. 5. yüzyıl civarında Yunanların kontrolü altındaydı. Burada doğan Teodorus (MÖ 465 – MÖ 398) hakkında bildiklerimiz Platon’un hocası olduğuyla Sokrates ile tanışıp bir süre için Atina’ya gitmiş olduğundan ibaret.

Platon’a göre Teodorus irrasyonel sayılarla önemli harikulade çalışmalar yapmıştı. Daha önce antik Yunan bilim insanlarının sayıları uzunluk olarak düşünmüş olduğundan bahsetmiştim. Pisagorcular tüm sayıların rasyonel (mantıklı/iki tam sayının birbirine bölümü) olduğunu iddia etmişti. Fakat ne ilginçtir ki Pisagor teoremi diye adlandırdığımız geometrik bilgi, Pisagorcuların iddiasını çürütmüş ve rasyonel olmayan sayıların da var olduğunu göstermişti.

indir (3)
Platon

Teodorus da bir Pisagorcu idi ve doğal olarak sayı teoremi ile ilgilenmişti. Yine Platon sayesinde biliyoruz ki Teodorus 2, 3, 5, … gibi sayıların kare köklerinin rasyonel olmadığını ispat etmişti.

Bu yazının konusu Teodorus’un Spirali diye bilinen ve içinde inanılmaz bilgiler barındıran basit ama bir o kadar da gizemli bir geometrik şekildir.

Teodorus’un Spirali

Aynı zamanda “Einstein Spirali”, “Pi Spirali”, “Kare Kök Spirali” isimleriyle bilinen spiral, Pisagor teoremini bilen herkes tarafından oluşturulabilir.

Öncelikle dik kenarları 1’er birim uzunlukta olan bir ikizkenar dik üçgen çizin. Bu dik üçgenin hipotenüs uzunluğunun Pisagor teoremi sayesinde √2 birim olduğunu biliyoruz.

IMG_5384

Daha sonra bir önceki üçgenin hipotenüsü olan √2 birimlik kenara dik ve 1 birim uzunlukta bir doğru parçası çizilerek yeni bir dik üçgen oluşturulur. Bu dik üçgenin hipotenüs uzunluğu (yine Pisagor teoreminden) √3 birim olur.

Bu sefer √3 birim uzunluğuna dik ve 1 birim uzunlukta bir doğru parçası çizilir ve yeni bir dik üçgen daha yaratılmış olur. Bu dik üçgenin hipotenüsü √4 birimdir.

Teodorus bu yöntemi √17 birim uzunluğunda bir doğru parçası bulana dek devam ettirmiştir. Oluşan şekil görüldüğü üzere bir spiraldir.

IMG_5379

Teodorus’un neden √17’de durduğunu kesin olarak bilemiyoruz. Oluşan şeklin √17’den sonra üst üste bindiğini gördüğü için durmuş olması en kuvvetli ihtimal.

Spiral Gibisi Yok

Peki Teodorus’un spiralinin ne özelliği var?

  • Hipotenüs uzunluklarına bakıldığında tam kare olanlar hariç kalan uzunlukların tamamı irrasyoneldir. Tam kare olanlar √1, √4, √16, √25 … diye devam eder.
  • Spiral sonsuza dek uzatıldığında dahi (yani sürekli yeni üçgenler eklendiğinde) herhangi iki hipotenüs birbiriyle çakışmaz.

    IMG_5380
    Çok yakın olanlar varsa da herhangi iki hipotenüs birbiriyle çakışmaz.
  • Yeni üçgenler ekleyip spiral büyütüldüğünde, spiral kolları arasındaki boşluğun uzunluğu π sayısına yakınsar.

    IMG_5383
    30 tane üçgenle 3,1 cm’ye geldim. Eğer sabırla üçgen eklemeye devam etseydim π’ye daha da yakın olurdum.
  • Peşi sıra gelen iki tam kare uzunluklu hipotenüs arasındaki açı 360/π dereceye yakınsar. 360/π = 114,591559026… yapar. Benim çizimim henüz ilk üç tam kare sayıdayken bile gerçekten bu değere çok yakın çıktı. Şanslıydım.

Katil Eğri

Sıra Teodorus’un spiraliyle ilgili en sevdiğim özelliğe geldi. Spirali oluşturan üçgenleri kesip çıkaralım ve koordinat düzleminde yan yana dizelim.

Üçgenlerin uç noktalarını birleştirince karşımıza y=√x eğrisi çıkar. Eğer irrasyonel sayılara katil sayılar diyorsam, bu eğriye de katil eğri demem gerekir.

Bir de GeoGebra isimli programla çizmeyi denedim.

teodorusgeo

Bi’ Göz Atmakta Fayda Var

İlk üçgeni şekildeki gibi alıp Teodorus’un yöntemini aynen uygulayın.

IMG_5394

Teodorus’un spiraline göre neler daha farklı? Ne gibi yenilikler görüyorsunuz?

M. Serkan Kalaycıoğlu

 

Matematik Atölyesi: Geometri #6

Antik Yunanlardan önce matematik insanlar için hayatiydi. Bu yüzden matematikle ilgili gelişmeler hep gündelik hayatta karşılaşılan problemlere yanıt bulmak içindi. Antik Yunanlar ise matematiği zevk için yapıyordu. Onlar için ortaya attıkları soruların illa gündelik hayatta bir karşılığı olması gerekmiyordu.

Bu sorulardan biri, en zeki antik Yunan bilim insanlarını dahi çaresiz bırakmıştı. Bugün Delos Problemi, veya Küpün Hacmini İki Katına Çıkarmak diye bilinen problemin başlangıcı için iki farklı hikaye vardır. Hangisini daha çok seviyorum diye aralarında bir seçim yapamadığım için her iki hikayeyi de kısaca anlatacağım.

Vebadan Kurtuluş

Bu hikaye İzmirli Theon’a göre Eratosthenes‘in kaybolan bir eserinde yer alıyordu.

Eratosthenes-1-259x300

Tahmini olarak milattan önce 430 yılında Atina’da bir veba salgını baş göstermişti. Şehri yönetenler büyük bir paniğe yol açan salgını durdurma konusunda çaresiz kalmıştı. Tam bu durum içindeyken Tanrı bir kahin üzerinden vebayı sona erdirmek için insanlara bir görev verir. Söylentiye göre Tanrı şehirde bulunan bir altarın iki katı büyüklüğünde yeni bir altar yapılmasını, ancak bu inşaatın yapılmasıyla veba salgınının son bulacağını emretmişti. (Altar: Adak adanan ve kurban kesilen alan.)

Atinalı bilim insanları en başta kolay görülen bu işi bir türlü becerememişti. Antik Yunanlar geometri konusunda çok başarılıydı ve sadece pergel ile ölçüsüz cetvel kullanarak her şeyi yapabileceklerini düşünüyordu. Fakat uğraşlar sonuç vermiyor, altarın hacminin iki katı olan yeni bir altarın boyutları bulunamıyordu. Sonunda zamanın ünlü ismi Plato’ya danışılmıştı. Plato’ya göre Tanrının bu soruyu göndermesinin nedeni altarın inşa edilmesi değil, Yunanların aslında geometri konusunda ne kadar cahil olduğunu göstermek istemesiydi.

plague-of-athens
MÖ 430-426 arasında Atina’da yaşanan veba salgınını anlatan bir tablo.

Glafkos’un Mezarı

Bu hikayeyse Arşimet’in kitaplarından birinde yer alır. Buna göre Eratosthenes Yunan kralına bir mektup yazmış ve aşağıdaki durumdan bahsetmişti.

Hikayenin baş kahramanları Zeus ile Europa’nın oğlu olan Minos ve onun oğlu Glafkos’tur. Anlatılana göre Minos, çocuk yaşta kaybettiği oğlu için bir mezar yapılmasını emretmiş, fakat inşa edilen mezarın bir soyluya yakışmayacak derecede küçük olduğunu düşünmüştü. Küp şeklinde yapılan mezarın iki katı büyüklüğe çıkarılmasını isteyen Minos, bunun için her bir kenarın uzunluğunun iki katına getirilmesini emretmişti.

Minos
Minos

Buradaki sorunu bir küpün hacmini bulmayı bilen herkes kolaylıkla görebilir. Eğer bir küpün her kenarı iki katına çıkarılırsa, küpün hacmi iki değil sekiz katına çıkar. Hikayeye göre ne Minos, ne de emrindeki adamlar sorunu çözememişti.

kc3bcp2.jpg
a küpünün hacmi 1 iken, bir kenar uzunluğu iki katına çıkarılarak oluşturulan b küpünün hacmi 8 olur.

Çözülemeyen Üç Soru

Herhangi bir küpün hacmini iki katına çıkarma problemi sadece pergel ve cetvel kullanarak çözülemeyen üç problemden biridir. (Diğer iki probleme daha sonra değineceğim.) Bunu ilk ortaya atan Gauss olsa da iddiasını destekleyen bir ispat sunmamıştı. İlk ispat 1837’de Pierre Wantzel’den gelmişti. Yani problemin ortaya çıkışından en az 2250 yıl önce!

Gelin soruyu modern matematik sembolleriyle bir de biz çözmeye çalışalım.

Her bir kenarı 1 birim uzunlukta olan bir küpü ele alalım. Küpün hacmi;

1x1x1 = 1 br3

olur. Bu küpün hacminin iki katı 2 br3‘tür. O halde elde edilmesi gereken şey, hacmi 2 brolan bir küpü çizmektir. Böyle bir küpün bir kenarının uzunluğu;

a= 2

a = 3√2 olur. Yani soruyu çözdük… mü acaba?

Antik Yunanların problemi ellerinde ölçüsüz bir cetvel ve pergelden başka bir şey olmamasıydı. Çünkü sadece bu ikisini kullanarak 3√2 boyutunu belirlemek imkansızdır. Her ne kadar onlar bunun imkansız olduğunu ispatlayamamış olsa da, gerçeğin farkındaydılar.

Nasıl Çözülür?

Bir küpün hacminin iki katı hacme sahip başka bir küp çizmek için Neusis Çizimi ismi verilen bir yöntem kullanılır.

Fakat ben origami sanatının gücünü kullanarak bunun nasıl başarılabileceğini göstereceğim.

Önce bir kenarı 9 cm olan bir kare şeklinde kağıt parçasını origami yöntemleri kullanarak 3 eşit parçaya böldüm.

Daha sonra karenin sağ kenarında bulunan B noktasını, sol kenarda bulunan C noktasının hizasına getirdim. Bunu yaparken A noktasının karenin sol kenarına denk gelmesine de özen gösterdim.

A’nın karenin sol kenarına dokunduğu yere D noktası dedim. İşte D ile F noktaları arasında kalan mesafe, D ile E noktaları arasındaki mesafenin  3√2 katıdır.

Peter Messer’in çözümünde kullandığı çizimler aşağıdaki gibidir. CB arası 1 birim ise, AC arasındaki mesafe  3√2 olur.

Bi’ Göz Atmakta Fayda Var

2000 yıldan uzun bir süre insanları meşgul eden bir soru, origamiyle nasıl oluyor da bir dakikanın altında bir sürede çözülebiliyor? Cetvel&pergel yönteminin origamiden eksiği nedir?

M. Serkan Kalaycıoğlu

 

Matematik Atölyesi: Katil Sayılar #2

Bir önceki yazıda Hippasus’un sonunu getiren sayılardan bahsetmiştik. Bu sayılar ne ölçülebiliyor, ne de iki sayının oranı şeklinde gösterilebiliyordu.

İrrasyonel, yani mantıksız diye adlandırılması da bu nedenledir: Uzunluk elimizin altında ama ölçemiyoruz, sayı karşımızda ama belirtemiyoruz.

√2: En ünlü irrasyonel sayılardan biri. 

Farkında olalım ya da olmayalım; bahsettiğim uzunluğa kare şeklinde olan her şeyde rastlıyoruz. Eğer bir kareyi çapraz köşelerinden ikiye bölersek karşımıza bir ikizkenar dik üçgen çıkar.

IMG_4552

Diyelim ki elimizde dik kenarları 12’şer cm uzunlukta olan bir dik üçgen var. Pisagor teoremine göre dik üçgenin uzun kenarının karesi, dik kenarların karelerinin toplamıdır. O halde:

olur. Yani uzun kenar irrasyonel bir sayı çıkmıştır.

Bu kenarı ölçmeye çalıştığımızda ise 16,97056… sayısıyla karşılaşırız.

Eğer 16,97056… yerine 17 dersek ne olur?

√2 Sonunda Mantıklı

12√2=17 dersek;

pisag5

sonucuna ulaşırız. √2 iki sayının oranı şeklinde yazılabildiği için artık rasyoneldir! Bundan sonra √2 gördüğümüz her yere 17/12 yazabiliriz.

Fakat, dik üçgen üzerinde biraz oynadığımızda hemen bulduğumuz sonucun ne kadar sıkıntılı olduğunu görebiliriz.

Çelişki İle İspat

12 cm uzunluğundaki dik kenarlardan altta kalanını 5 ve 7 cm olacak şekilde ayıralım ve tam bu noktadan uzun kenara bir çizgi indirelim.

IMG_4553

 

 

Bu durumda uzun kenara inen çizgi diktir ve uzunluğu 5 cm’dir. (Bunun doğru olup olmadığını görmek için kendi üçgeninizi çizip yapılan işlemi tekrarlayın. Cetvel uzunluğu, açıölçer ise dikliği doğrulayacaktır.)

 

IMG_4554

 

Elimizdeki ikizkenar dik üçgenin içinde üç adet dik üçgen elde etmiş olduk: A, B ve C. A ve B dik üçgenleri birbiriyle özdeştir, bu yüzden de büyük üçgenin uzun kenarı 12 ve 5 cm olarak ikiye ayrılmıştır. C ise ikizkenar dik üçgendir. Gelin C’yi daha yakından inceleyelim.

 

 

IMG_4554Dik kenarları 5 cm, uzun kenarı ise 7 cm uzunluğunda olan bir ikizkenar dik üçgenimiz var. Öğrendiğimiz üzere böyle bir durumda Pisagor teoremi bize uzun kenarın uzunluğunun dik kenarın √2 katı olduğunu söyler. O halde uzun kenar 5√2 cm olmalıdır.

 

Fakat az önce √2 yerine 17/12 yazabileceğimizi söylemiştik. Yani uzun kenar

5*(17/12) cm

85/12 cm

olur. Fakat fotoğrafta görüldüğü üzere uzun kenar 7 cm‘dir.

7 = 85/12 sonucu bir çelişkidir.

Bu yüzden bizim en başta yaptığımız kabul yanlıştır. √2 rasyonel değildir.

Bi’ Göz Atmakta Fayda Var

  1. Aynı işlemi C üçgeni için tekrarlayıp √2’nin rasyonel olmadığını gösterin.
  2. İkizkenar dik üçgenin dik kenarlarının uzunluğu 12 yerine 10 cm olsaydı ne olurdu?

M. Serkan Kalaycıoğlu

 

Matematik Atölyesi: Geometri #2

Rakamsız Matematik

Yaklaşık 2700 yıl önce antik Yunanlar bilimin hemen her alanında öncülüğü ele geçirmişti. Yüzyıllar boyunca Thales, Pisagor, Eudoxus ve Öklid gibi sadece matematik değil insanlık tarihine geçmiş olan ünlü isimler matematiğin gelişiminde lokomotif rolündeydi. Fakat Yunan matematikçiler diğer milletlerden meslektaşlarının aksine sayıları çok önemsememişti. Onlara göre matematiğin temeli geometri idi ve sayılar matematikteki her şey gibi geometriyle ortaya çıkmıştı.

Peki ne rakam sembollerini ne de sayı sistemlerini umursayan antik Yunanlar nasıl oldu da tarihin en önemli matematik eserlerinden bazılarını yazmıştı?

Cetvel, Pergel ve Birim

Antik Yunanistan’da sayı yerine büyüklük kullanılmıştı. Büyüklük belirtmek içinse doğru parçaları çiziliyordu. Yani Yunan matematikçiler bir sayı yazmak yerine, o sayıyı ifade eden bir uzunluk çiziyordu. Bu yapılırken de sadece ölçüsüz cetvel, pergel ve belirlenmiş bir birim uzunluk kullanmıştı. (Antik Yunan matematikçilerin bu üçünü kullanarak neler becerdiklerini sonraki günlerde detaylarıyla açıklayacağım.)

Gelelim asıl meselemize: Yunanlar çizgilerle matematik yapmayı nasıl becermişti?

a ve b birer pozitif tam sayı olsun.

  • Toplama

Elimizdeki sayıların toplamı a+b olur. Uzunluk kullanarak a+b şu şekilde gösterilir:

a+b

  • Çıkarma

Sayılardan a, b’den büyük olsun. O halde çıkarmamız a-b olur. Uzunluk kullanarak a-b şu şekilde gösterilir:

a-b

  • Çarpma

Sayıların çarpımı a.b olur. Bu noktada üçgende benzerlik kullanılması gerekir. Bir üçgeni büyütür ya da küçültür isek (tıpkı akıllı telefonlarda bir resmi büyütüp küçülttüğümüz gibi) o üçgenin benzerini yaratmış oluruz. O halde elimizdeki üçgenlerden küçük olanının iki kenarı sırasıyla 1 birim ve a birim olsun. Bu üçgenin büyütülmüş halinde 1 birimlik kenar b birime denk gelirse, a birimlik kenar a.b birim olur.

  • Bölme

Sayıların bölümü a/b olur. Aynı çarpmada olduğu gibi benzerlik kullanılır. Bu sefer büyük üçgenin iki kenarı b ve a olsun. Uzunluğu b olan kenar 1 birime küçültülürse, a birimlik kenar a/b birim olur.

  • Karekök Alma

a sayısının karekökünü almak için a+1 uzunluğu çizilsin. Uzunluğun kendisi, bir çemberin çapı kabul edilsin ve alt taraftan yarım çember çizilsin. a’nın bittiği yerden çembere çizilen dik çizgi a’nın kareköküdür.

Bi’ Göz Atmakta Fayda Var

Yunan matematikçilerin sayı kullanmadan işlem yapabilmesi, geometri dışındaki matematik branşlarına girdikleri anlamına gelir mi? (İpucu: Diyofantus ismini Google’da araştırın.)

M. Serkan Kalaycıoğlu