Matematik Atölyesi – Garip Dünyalar #16

Yürüyüş

  • Sınıfın içerisinde iki nokta belirlenir.
  • Bu iki nokta arasına bir çizgi (örneğin bir ip serilerek) çizilir.
  • Noktalardan birine öğrencilerden biri gönderilir.
  • Öğrenci harekete başladıktan 10 saniye sonra ipin diğer ucuna varmak zorundadır.
  • Öğrenciye yardımcı olmak için harekete başladıktan sonra hep bir ağızdan 10’a kadar sayılır.
  • Öğrenciden yürüyüşü iki defa yapması istenir ve her iki seferin de videosu çekilir.

Deneyin Amacı

Deney sonunda şu sorunun cevaplanması istenilir:

“Bu iki yürüyüşte öğrencinin ip üzerinde aynı zamanda bulunduğu bir nokta var mıdır?”

Özetle; öğrenci aynı yolu farklı hızlarda ama aynı sürede tamamlamaktadır. Öğrenilmek istenen şeyse yürüyüşler sırasında öğrencinin aynı konumda olduğu bir an olup olmadığıdır.

Öncelikle öğrencilere soru üzerinde düşünmesi ve akıl yürütmesi için zaman verilir. Daha sonra bu sorunun cevabı videoların yardımıyla verilir.

En önemli soru ise sona saklanır: Neden?

Yine bir neden sorusu… Gel de ayıkla pirincin taşını!

Ayıkla Pirincin Taşını

Küçüklüğümde bana verilenler işler arasında bir tepsi üzerine dökülmüş pirinç dağı içindeki taşları ayıklama işi gelirdi. Aslında bunu yaparken keyif alırdım. Çünkü pirinç taneleriyle garip şekiller yapmayı seviyordum.

Yıllar sonra matematik okurken öğrendiğim bir teorem bana taş ayıkladığım zamanları düşündürttü. Bu teoreme göre ayıklama işi bittiğinde en az bir pirinç tanesi, ayıklama işlemi başlamadan önce bulunduğu konumda olurdu. (Pirinç tanelerinin tepsinin yüzeyini komple kapladığını varsaydığımız durumda.) Bir diğer deyişle pirinç tanelerini ne kadar karıştırırsam karıştırayım, en az bir pirinç tanesi karıştırmadan önce neredeyse yine o noktada olurdu.

Bu inanması güç durumu açıklayan kişi Hollandalı matematikçi L.E.J. Brouwer’di. Brouwer’in sabit nokta teoremi topoloji ile alakalıdır ve matematiğin en önemli teoremleri arasında gelir.

Yürüyüşün Cevabı

Yürüyüş deneyi de bir tür Brouwer’in sabit nokta teoremi örneği olduğu için cevap “evet”tir: Öğrencinin yürüyüşleri nasıl olursa olsun yürüyüşler sırasında öyle bir an vardır ki, tam o anda öğrenci her iki yürüyüşte de aynı noktadadır.

Brouwer’in sabit noktasından bahsetmeye bir sonraki yazıda devam edeceğim.

Bi’ Göz Atmakta Fayda Var

Bir adam sabah 08:00’da evinden yola çıkıyor ve 14:00’te başka bir şehirde yaşayan arkadaşını ziyaret ediyor. Ertesi sabah yine saat 08:00’de yola çıkıyor ve 14:00’te evine varıyor.

Koşullar

  • Değişmeyen şeyler başlangıç ve bitiş noktalarıyla yolculuğun süresidir.
  • Yani adam yolculukları süresince aynı ve/veya farklı hızlarda hareket ediyor olabilir.

Adam bu iki gün içerisinde aynı saatte yolun aynı noktasında olma ihtimali var mıdır?

İpucu: Mesafenin 600 km olduğu ve öğrencinin bu mesafeyi 6 saatte alacak şekilde hızlarda gittiği varsayılabilir. Örneğin gidişte saatte 100 km sabit hızı varken dönüşte ilk 2 saat 80 km/sa, sonraki 2 saat 100 km/sa ve son 2 saat 120 km/sa hızla yol aldığı düşünülebilir.

M. Serkan Kalaycıoğlu

Matematik Atölyesi – Garip Dünyalar #14

Kulaklıklar Artık Düğüm Olmasın

12-13 yaşlarındayken kasetçalarım olmadan dışarı çıkmazdım. Kasetçalarımla ilgili iki büyük düğümlenme sorunum vardı. Bunlardan ilki kasetin bandının düğümlenmesiydi. Şanslıysam kalem yardımıyla bu düğümü kolayca çözebilirdim. Şansımın yaver gitmediği durumlarda ise kaset çöpe giderdi.

person holding black cassette tape

Diğer düğüm problemi kulaklığımla alakalıydı. Kimi zamanlar kulaklığım öyle düğümlenirdi ki düğümü çözene kadar muhakkak bir arkadaşıma denk gelirdim. Bu da karışık kasedimi bir sonraki güne kadar dinleyemeyeceğim demekti.

20190730_143315.jpg

İşin komik tarafı yaşadığım sinir harbi nedeniyle kulaklığı çantama rastgele fırlatarak aynı sorunu ertesi gün de yaşayacağımı garantiye alıyordum.

Çantada birbirine dolanan kulaklık olayının bir benzeri vücudumuzu oluşturan hücrelerde her an yaşanmaktadır.

DNA, tüm organizmalar ve bazı virüslerin canlılık işlevleri ve biyolojik gelişmeleri için gerekli olan genetik talimatları taşıyan bir nükleik asittir. DNA’nın başlıca rolü bilginin uzun süreli saklanmasıdır.

dna_main_001

DNA, “helix” adıyla bilinen bir sarmal eğri şeklindedir. Bir hücrenin içinde bulunan DNA sarmalının uzunluğu 2 metreyi bulur. Boyutlar arasındaki ilişkiyi tamamen anlamanız için bir örnek vereceğim: Eğer bir hücrenin çekirdeği basketbol topu büyüklüğünde olsaydı, o hücrede bulunan DNA 200 km uzunluğunda olurdu.

Bir metrelik kulaklığı kocaman bir çantaya atınca neler olduğunu biliyorsunuz. Bir basketbol topunun içine 200 km uzunluğunda sarmal eğri sığdırmaya çalışmak mı?! Tanrım; her yer düğüm!

Düğüm Teorisi

İşte bu keşmekeş matematikçilerin düğümlerle ilgilenmesine neden olmuştu. Fakat matematik ile düğümün ilişkisi DNA çalışmalarından çok daha eskiye dayanıyor. 19. yüzyılda İskoç bilim insanı William Thomson (nam-ı diğer Lord Kelvin) atomların farklı düğümler şeklinde olduğunu öne sürmüştü. Kısa süre içinde Lord Kelvin’in fikri matematikçileri düğümleri incelemeye itse de Lord Kelvin’in yanıldığının ortaya çıkması düğüm teoresini neredeyse 100 yıl boyunca kendi haline bırakmıştı. (20. yüzyılın başlarında Kurt Reidermeister’ın çalışmaları neredeyse 1980’lere dek tekti. Reidermeister’dan bir sonraki yazıda bahsedeceğim.)

Peki matematiksel düğümün diğer düğümlerden farkı var mı?

maxresdefault (4)

Örneğin ayakkabı bağcıklarını bağlarken atılan düğüm, matematikte düğüm olarak karşılık görmez. Çünkü bağcığın iki ucu açıktır. Halbuki matematikte bir düğümün iki ucu birbirine bağlı olmalıdır.

180px-Example_of_Knots.svg

Soldaki düğüm olsa da matematikte düğüm ifade etmez. Sağdaki ise matematiksel bir düğümdür.

Unknot* ve Trefoil*

Düğüm teorisinde düğümlere farklı isimler verilir. Bu yapılırken düğümün en sade halinin sahip olduğu kesişim sayısı dikkate alınır. Hiç kesişimi olmayan bir düğüm (unknot veya kesişimsiz düğüm) aslında bir çemberdir:

20190730_135245.jpg
Lastik bant bir kesişimsiz düğümü ifade eder. (unknot)

Aşağıdaki iki düğüme bir göz atın:

 

 

Bu düğümler birbirlerinden farklı görünüyor değil mi? Soldakinde 1, sağdakindeyse 2 kesişim vardır.

lanaa.jpg

Fakat bu düğümlerden birini kesip-biçmeden, yalnızca iple oynayarak (bir tarafa yatırmak ve/veya ters çevirmek gibi) diğerine benzetebiliriz!

Yani aslında bu iki düğüm birbirinin aynısıdır. Hatta bu iki düğüm, yukarıda gösterilmiş olan kesişimsiz düğümün ta kendisidir. Örneğin soldaki düğümün sol kısmı yukarı itilirse kesişimsiz düğüme dönülür:

 

 

1 kesişimi olan ama kesişimsiz düğüme döndürülemeyen bir düğüm var mıdır?

Hemen yanıtı veriyorum: 1, ve hatta 2, kesişimi olup da kesişimsiz düğüme döndürülemeyecek bir düğüm yoktur.

Peki ya 3 kesişim?

3 kesişimi olup, kesişimsiz düğüme çevrilemeyen düğüme trefoil denilir.

Blue_Trefoil_Knot.png
Trefoil düğüm.

Trefoil, ilk bakışta kesişimsiz düğüme çevrilebilecekmiş gibi görünse de düğüm teorisi kuralları çerçevesinde (yani kesip-biçmeden) bunu yapmak imkansızdır. Trefoil özel bir düğümdür, çünkü (unknot dışında) kesişim sayısı en düşük (3) olan düğümdür. Bu yüzden de trefoil düğüm teorisi için temel kabul edilir.

trefoilandmirror.jpg

Trefoil düğümün önemli özelliklerinden biri ayna simetrisiyle alakalıdır: Birbirinin simetrisi olan a ve b trefoilleri birbirinden farklıdır! Yani birinden diğerini elde etmek düğüm teorisi kuralları içinde mümkün değildir.

Möbius Şeridi ve Trefoil

Daha önce Möbius şeridi ve özelliklerinden bahsetmiştim. Kısaca hatırlatmak gerekirse bir kağıt şeridinin iki ucu birbirine bağlanırsa çember elde edilirken, uçlardan biri 180 derece çevrilip uçlar bağlanırsa karşınıza Möbius şeridi çıkar.

Gelin Möbius şeridini yaparken uçlardan birini üç defa 180 derece çevirelim:

 

 

Daha sonra oluşan şekli ortasından (boyuna paralel olarak) keselim:

20190730_131333.jpg

Karşımıza aşağıdaki gibi bir şekil çıkar:

20190730_134158-1.jpg

Şekli bir kurcaladığımızda aslında bir trefoil düğümü elde ettiğimizi görürüz:

 

 

Devam edecek…

Bi’ Göz Atmakta Fayda Var

  1. Kağıt şeridinden trefoil düğümü yaparken şeridin ucunu 3 defa 180 derece döndürüyoruz. Bu döndürmeyi içe veya dışa yapmanın bir farkı var mıdır? Neyle karşılaştınız?
  2. Şeridin ucunu 3 değil de 5 defa döndürürseniz ne olur? (Cevabı bir sonraki yazıda.)

M. Serkan Kalaycıoğlu

Matematik Atölyesi – Sayılar #9

Sihir

Matematiğin sayılar kısmında daha iyi olmak için kimine gereksiz görülen sorularla uğraşmak büyük fayda sağlar. Aslında bu tür soruların gereksiz diye tanımlanması kişinin sorudan korkmasından kaynaklanır.

Kişinin hissettiği şey bilmediğiniz bir sokak, cadde, şehir veya ülkede bulunmak gibidir. Konfor alanından uzaktır ve denemediği sürece kendi evi, sokağı, şehri, ülkesindeki kadar rahat hissedemeyecektir. Karşısına gelen bir soruyu gereksiz diye adlandırmak kişinin yaşadığı matematik korkusunun farklı bir şekilde dışa vurumudur.

O halde matematikte daha iyi olabilmek için şartlardan biri denemek/uğraşmaktır. Böylece kendi yönteminizi bulabilir, insanların şaşıracağı şeyleri başarabilirsiniz. Üzerinde durmam gereken bir nokta daha var: Eğer bir sihirbazın ne yaptığı çok açıksa o şovu bir daha kimse izlemek istemez. Sihir; başkaları yaptığınızı anlamadığında güzeldir.

Eşit Toplamlar

Elimizde 1 ile 50 arasında bulunan ve birbirinden farklı on sayı olsun. Bu sayıları beşerli öyle iki gruba ayıralım ki, grupların toplamı birbirine eşit olsun.

Örnek 1: Rastgele sayılarım: 2, 12, 23, 24, 30, 33, 39, 41, 44, 48.

Bu sayıları toplamları birbirine eşit olan iki gruba ayırmam lazım. Her grupta da beş sayı olmalı.

Kısa süre sonra bunu becerebildim. Evet bu rastgele sayılardan iki grup çıkardım ve bu grupların toplamları birbirine eşit oldu:

48+41+33+24+2 = 148 = 44+39+30+23+12

Belki de bu sayıları bilerek seçtiğimi düşündünüz. Bu yüzden arkadaşlarımdan 1-50 arasında on tane sayı seçip bana yazmalarını istedim.

Örnek 2: İlk arkadaşımdan gelen rastgele sayılar: 34, 21, 7, 42, 22, 33, 13, 27, 20, 19.

IMG_6607

Bu sayıları da iki eşit gruba ayırabildim. Sonuç aşağıdaki gibi oldu:

34+33+13+20+19 = 119 = 21+22+27+42+7

Örnek 3: Bir başka arkadaşımdan şu sayıları aldım:

3, 9, 13, 19, 21, 27, 36, 33, 39, 45.

IMG_6609

Örnek 4: Son örneğimi bir üniversite arkadaşımdan aldığım on sayı oluşturuyor:

7, 10, 11, 14, 21, 23, 30, 33, 43, 49.

IMG_6608

Henüz ilk bakışta üçüncü ve dördüncü örnekteki istenilenin yapılamayacağını anladım. Yani bu sayılar toplamları birbirine eşit olan beşerli iki gruba ayrılamaz.

Bi’ Göz Atmakta Fayda Var

  1. İlk iki örneği nasıl yaptığımı bilerek açıklamadım. Sizce nasıl bir yöntem izlemiş olabilirim?
  2. Peki ama nasıl oldu da üçüncü ve dördüncü örnekteki sayılarla ilgili sonucumu sadece saniyeler içerisinde verebildim?

İpucu: Sayıların kaç tanesinin tek veya çift olduğuna dikkat edin.

M. Serkan Kalaycıoğlu